Design & Verification of Restart-robust
Industrial Control Software

Dimitri Bohlender

VTSA’18, Inria Nancy, 27 August 2018

Informatik 11
Embedded Software

Introduction On Restart-robustness

000

Programmable Logic Controllers (PLCs)

PLCs are devices tailored to the domain of industrial
automation, e.g. for actuating valves of a tank
Realise reactive systems, repeatedly executing the same task

Single Cycle

Sensors
actuators

PLC

1/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

Introduction

000

Programmable Logic Controllers (PLCs)

PLCs are devices tailored to the domain of industrial
automation, e.g. for actuating valves of a tank
Realise reactive systems, repeatedly executing the same task

Single Cycle

:

2 quut =

S Variables 2

(6]

* ©
PLC

1/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

Programmable Logic Controllers (PLCs)

PLCs are devices tailored to the domain of industrial
automation, e.g. for actuating valves of a tank
Realise reactive systems, repeatedly executing the same task

Single Cycle

:

2 quut =

S Variables =

® <
PLC

1/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

Programmable Logic Controllers (PLCs)

PLCs are devices tailored to the domain of industrial
automation, e.g. for actuating valves of a tank
Realise reactive systems, repeatedly executing the same task

Single Cycle

e - @

S Input - 2

S Variables Variables g 2

@ - ®
PLC

1/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

Programmable Logic Controllers (PLCs)

PLCs are devices tailored to the domain of industrial
automation, e.g. for actuating valves of a tank
Realise reactive systems, repeatedly executing the same task

Single Cycle

Variables f| Variables

Variables §§

Sensors
actuators

PLC

1/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

PLC Software
Written in textual & graphical languages from IEC 61131-3

1 | PROGRAM RunningExample
2 VAR RETAIN

3 fs:BOOL := TRUE;
4 END_VAR

5 VAR

6 a:INT := 0;

7 b:INT := 0;

8 END_VAR

9 IF fs THEN

10 fs := FALSE;

11 b := 2;

12 END_IF

13 a := 1234/b;

14 | END_PROGRAM

2/0 RWTH

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

PLC Software

Written in textual & graphical languages from IEC 61131-3
Features no recursion

1 | PROGRAM RunningExample
2 VAR RETAIN

3 fs:BOOL := TRUE;
4 END_VAR

5 VAR

6 a:INT := 0;

7 b:INT := 0;

8 END_VAR

9 IF fs THEN

10 fs := FALSE;

11 b := 2;

12 END_IF

13 a := 1234/b;

14 | END_PROGRAM

2/0 RWTH

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

PLC Software

Written in textual & graphical languages from IEC 61131-3
Features no recursion
Formalised as Control Flow Automaton (CFA)

©CoOoONOORWN =

PROGRAM RunningExample

VAR RETAIN
fs:BOOL
END_VAR
VAR
a:INT :
b:INT :
END_VAR
IF fs THEN

;= TRUE;

0;
0;

fs := FALSE;

b := 2;
END_IF

a := 1234/b;

END_PROGRAM

fs:=FALSE If

@X @ 0

a:=1234/b

2/9

Design & Verification of Restart-robust Industrial Control Software

D. Bohlender

Informatik 11
Embedded Software

Introduction
[e]e] J

Specifications

Intermediate states are not observable

@

&

fs:=FALSE Ifs
@ b=2
10

a:=1234/b

@@

a/0 RWTH

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

Introduction
[e]e] J

Specifications

Intermediate states are not observable

Automation engineers and specs always
refer to the observable state

I0

a/0 RWTH

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

Introduction
[e]e] J

Specifications

Intermediate states are not observable

Automation engineers and specs always
refer to the observable state

Most specifications can be formalised via
invariants or temporal logics

I0

3/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

Introduction

[ele] J

Specifications

Intermediate states are not observable

Automation engineers and specs always
refer to the observable state

Most specifications can be formalised via
invariants or temporal logics

Off-the-shelf verifier backend checks
formalised program w.r.t. the specification 10

3/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

Introduction

[ele] J

Specifications

Intermediate states are not observable

Automation engineers and specs always
refer to the observable state

Most specifications can be formalised via
invariants or temporal logics

Off-the-shelf verifier backend checks

formalised program w.r.t. the specification 10

Domain-specific specifications may

require dedicated procedures:
PLCopen-/Specification automata

Cycle-bounded temporal logics

3/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
@0

Retain Variables

PLC applications are often safety critical

/o RWTH

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
@0

Retain Variables

PLC applications are often safety critical
Power outage or manual restart should not affect correctness

/o RWTH

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
@0

Retain Variables

» PLC applications are often safety critical
» Power outage or manual restart should not affect correctness
— PLCs feature battery-backed memory for retain variables

Retain drill's position in automated processing of workpieces

Design & Verification of Restart-robust Industrial Control Software m
D. Bohlender

4/9

Informatik 11
Embedded Software

On Restart-robustness
@0

Retain Variables

» PLC applications are often safety critical
» Power outage or manual restart should not affect correctness
— PLCs feature battery-backed memory for retain variables

Retain drill's position in automated processing of workpieces

» Assignments to such variables have unspecified semantics

4/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software m
D. Bohlender

On Restart-robustness
@0

Retain Variables

» PLC applications are often safety critical
» Power outage or manual restart should not affect correctness
— PLCs feature battery-backed memory for retain variables

Retain drill's position in automated processing of workpieces

» Assignments to such variables have unspecified semantics
» Prominent: delayed writing at the current PLC cycle’s end

Design & Verification of Restart-robust Industrial Control Software
4 / 9 Informatik 11
D' BOhlender Embedded Software

On Restart-robustness
(o] J

Restart-robustness

Program is restart-robust w.r.t. a spec, if it complies with the spec
in the context of restarts

Restart-robustness w.r.t. invariant a > 0

5/9 RWTH

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
(o] J

Restart-robustness

Program is restart-robust w.r.t. a spec, if it complies with the spec
in the context of restarts

o

Restart-robustness w.r.t. invariant a > 0

fs:=FALSE Ifs

Initialised with [fs — true,a +— 0,b — 0] @
b:=2

The flag fs is retained 0

a:=1234/b

5/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
(o] J

Restart-robustness

Program is restart-robust w.r.t. a spec, if it complies with the spec
in the context of restarts

o

Restart-robustness w.r.t. invariant a > 0

fs:=FALSE Ifs

Initialised with [fs — true,a +— 0,b — 0]
b:=
The flag fs is retained @ §
Nominal behaviour compliant?

I0

a:=1234/b

5/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
(o] J

Restart-robustness

Program is restart-robust w.r.t. a spec, if it complies with the spec
in the context of restarts

o

Restart-robustness w.r.t. invariant a > 0

fs:=FALSE Ifs

Initialised with [fs — true,a +— 0,b — 0]
b:=
The flag fs is retained @ ’
Nominal behaviour compliant? v/

I0

a:=1234/b

5/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
(o] J

Restart-robustness

Program is restart-robust w.r.t. a spec, if it complies with the spec
in the context of restarts

o

fs:=FALSE Ifs

Initialised with [fs — true,a +— 0,b — 0]
b:=
The flag fs is retained @ ’

Restart-robustness w.r.t. invariant a > 0

10
Nominal behaviour compliant? v
Robust with delayed writes? a:=1234/b
5/9 Design & Verification of Restart-robust Industrial Control Software “ m‘
D. Bohlender Enaacae Stwars

On Restart-robustness
(o] J

Restart-robustness

Program is restart-robust w.r.t. a spec, if it complies with the spec
in the context of restarts

o

fs:=FALSE Ifs

Initialised with [fs — true,a +— 0,b — 0]
b:=
The flag fs is retained @ ’

Restart-robustness w.r.t. invariant a > 0

10
Nominal behaviour compliant? v
Robust with delayed writes? a:=1234/0 a:=1234/b
5/9 Design & Verification of Restart-robust Industrial Control Software “ m‘
D. Boh|ender Informatik 11

Embedded Software

On Restart-robustness
(o] J

Restart-robustness

Program is restart-robust w.r.t. a spec, if it complies with the spec
in the context of restarts

o

Restart-robustness w.r.t. invariant a > 0
Initialised with [fs — true,a +— 0,b+ 0]
The flag fs is retained @ o
Nominal behaviour compliant? v
Robust with delayed writes? a:=1234/0 a:=1234/b

fs:=FALSE Ifs

I0

Fixable for delayed writes?

5/9 Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
(o] J

Restart-robustness

Program is restart-robust w.r.t. a spec, if it complies with the spec
in the context of restarts

o

Restart-robustness w.r.t. invariant a > 0
Initialised with [fs — true,a +— 0,b+ 0]
The flag fs is retained @ o
Nominal behaviour compliant? v
Robust with delayed writes? a:=1234/0 a:=1234/b

fs:=FALSE Ifs

I0

Fixable for delayed writes? Retain b

5/9 Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
00

Delayed Write Semantics

@

on

Approach by instrumenting the fs:=FALSE | !fs

CFA with restart-behaviour @ b
10

O

a:=1234/b

Q

6/0 RWTH

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
00

Delayed Write Semantics

@

on

Approach by instrumenting the fs:=FALSE | !fs
CFA with restart-behaviour @ b
Observation: In case of restart, 10

O

operations since last cycle are
irrelevant a:=1234/b

Q

6/9 D. Bohlender

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software

On Restart-robustness
00

Delayed Write Semantics

@

on

Approach by instrumenting the fs:=FALSE | !fs
CFA with restart-behaviour @ b
Observation: In case of restart, 10

O

operations since last cycle are
irrelevant a:=1234/b

Model as nondeterministic
choice: restart in next cycle?

Q

D. Bohlender

Informatik 11
Embedded Software

6/9 Design & Verification of Restart-robust Industrial Control Software

On Restart-robustness
00

Delayed Write Semantics

@

o

Approach by instrumenting the fs:=FALSE | !fs

CFA with restart-behaviour @ b
Observation: In case of restart, @ 10
operations since last cycle are

irrelevant a:=1234/b

Model as nondeterministic

. . QJ
choice: restart in next cycle? Z.ze

D. Bohlender

Informatik 11
Embedded Software

6/9 Design & Verification of Restart-robust Industrial Control Software

On Restart-robustness
oe

Parameter Synthesis

Instrumentation enables @

checking restart-robustness

@

fs:=FALSE Ifs
@ B
a:=1234/b
a:=0;
TRUE
7/9 Design & Verification of Restart-robust Industrial Control Software “ m-l
D. Bohlender Enaadie Stwars

On Restart-robustness
oe

Parameter Synthesis

Instrumentation enables @

@

checking restart-robustness fo.sFALSE | 1Fs
Doesn’t help with finding safe bico
configuration of retain variables @ I
a:=1234/b
a:=o;
TRUE
Design & Verification of Restart-robust Industrial Control Software m-l
"% b Bohiender

On Restart-robustness
oe

Parameter Synthesis

Instrumentation enables @

@

checking restart-robustness fo.sFALSE | 1Fs
Doesn’t help with finding safe bico
configuration of retain variables I

O

Add Boolean parameter ret_v
for each non-retain variable v 2:21234/b

a:=ret_a ? a : 0;

b:=ret_b 27b: 0

TRUE

c

7/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
oe

Parameter Synthesis

Instrumentation enables @

@

checking restart-robustness fo.sFALSE | 1Fs
Doesn’t help with finding safe bico
configuration of retain variables I

s

Add Boolean parameter ret_v
for each non-retain variable v 2:21234/b

Synthesis boils down to solving
a:=ret_a ? a : 0;

HVPWVV\VWT b:=ret_b 2 b 0

TRUE

c

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

7/9

Informatik 11
Embedded Software

On Restart-robustness
@0

Approach

Observations:
Jv-quantified Horn clauses harder than regular CHCs

8/0 RWTH

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
@0

Approach

Observations:
Jv-quantified Horn clauses harder than regular CHCs
Our special case: existential quantification over Booleans

8/0 RWTH

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
@0

Approach

Observations:
Jv-quantified Horn clauses harder than regular CHCs
Our special case: existential quantification over Booleans
Idea:

Manage choice of parameters and reuse efficient procedures
for reasoning about restart-robustness for fixed parameters

8/0 RWTH

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
@0

Approach

Observations:
Jv-quantified Horn clauses harder than regular CHCs
Our special case: existential quantification over Booleans
Idea:

Manage choice of parameters and reuse efficient procedures
for reasoning about restart-robustness for fixed parameters

Over-approximate set of “safe” parameters and refine it while
counterexamples exist (CEGAR)

8/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
oe

Experiments — Synthesis Runtime [s]

'9 \\\\Hw T \\\\Hw VLR \\\Hw 9
3L)z

CTI 10 E e M 3

R L e ©

2 | X

e z -

= 2 ! 7~

€ 10 g - M

(9p] B /// A // R

8 7 L7 A

17 . p

< 10 E A a

g g A pagn

< 5 zﬁ%@h‘ L A4

O L7

| 100 Lol Lol A

O "0 10! 102 10°

Z3 (MBQI) — 47 TO

o/0 RWTH

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

On Restart-robustness
oe

Experiments — Synthesis Runtime [s]

'9 \\\\Hw T \\\\Hw VLR \\\Hw 9
3L)z

CTI 10 E e M 3

R L e ©

2 | X

e z -

= 2 ! 7~

€ 10 g - M

(9p] B /// A // R

8 7 L7 A

17 . p

< 10 E A a

g g A pagn

< 5 zﬁ%@h‘ L A4

O L7

| 100 Lol Lol A

O "0 10! 102 10°

Z3 (MBQI) — 47 TO

Future work will investigate restart-robustness as a relational property
between the nominal and restart-behaviour.

o/0 RWTH

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

Related Work

[Hau+15] assumes delayed write semantics and adapts static
value analysis to distinguish between variables’ values before
and after a restart

Crash recoverability of C programs [KY16] is a related
problem, using a similar modelling, but differing from
restart-robustness in terms of requirements and program
transformations

SMV-based parameter synthesis for models of gene
regulatory networks [Bat+10]

Our counterexample-guided approach is most similar to
[Cim+13] but does not require quantifier elimination, is
independent of the chosen theory to model values, and works
with any CHC-solving algorithm

10/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

Appendix
oe

Algorithm 1: SynthRetainConf(P, ¢)

Input :Program P = (X & Xpar, Xin, A, lgoc, lEoc, def) with prametrised retains
Predicate (X)) characterising safe states

Variables: Predicate safe(Xpar) charactering parameters that do not lead to violations
Universally quantified Horn clauses #H

1 H <« toHorn(P) /I Represent program as YCHCs
2 (V,I,T) + toSymTS(P) /I and as symbolic transition system
3 safe()?par) <« true /I All parameters are assumed to be safe
4 while —sat (H U {p(X) « peoc(X & Xpar), safe(Xpar)}) do // 3 violating run?
5 k «+ length of violating run

6 cpar < cube of chosen (Boolean) parameter values in violating run

7 foreach lit in cpar do

8 Cpar < cpar With negated lit // Flip literal
9 if sat (I(V) A Ag<ic T(Vi, Vi1) A Gpar A ~p(Xy)) then // Still violating?
10 | cpar ¢ cpar \ lit // Drop literal
1 safe()?par) — safe()?par) A —Cpar // Block unsafe parameters
12 return Safe()zpar) // (Potentially empty) region of safe parameters

79 D. Bohlender

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software

References |

[Bat+10]

[Cim+13]

[Hau+15]

Grégory Batt et al. “Efficient parameter search for
qualitative models of regulatory networks using
symbolic model checking”. In: Bioinformatics 26.18
(2010).

Alessandro Cimatti et al. “Parameter synthesis with
IC3”. In: Formal Methods in Computer-Aided Design,
FMCAD 2013, Portland, OR, USA, October 20-23,
2013. 2013, pp. 165-168.

Stefan Hauck-Stattelmann et al. “Analyzing the
Restart Behavior of Industrial Control Applications”. In:
FM 2015: Formal Methods - 20th International
Symposium, Oslo, Norway, June 24-26, 2015,
Proceedings. 2015, pp. 585-588.

12/9

Design & Verification of Restart-robust Industrial Control Software
Informatik 11

D. Bohlender

Embedded Software

References Il

[KY16] Eric Koskinen and Junfeng Yang. “Reducing crash
recoverability to reachability”. In: Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016,
St. Petersburg, FL, USA, January 20 - 22, 2016. 2016,
pp. 97-108.

13/9

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender

	Introduction
	Model Checking Industrial Control Software

	On Restart-robustness
	Motivation
	Synthesis of Safe Retain Configurations
	Counterexample-Guided Parameter Synthesis

	Appendix
	Appendix
	Backup Slides
	Bibliography

