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PLC Software
Written in textual & graphical languages from IEC 61131-3

1 | PROGRAM RunningExample
2 VAR RETAIN

3 fs:BOOL := TRUE;
4 END_VAR

5 VAR

6 a:INT := 0;

7 b:INT := 0;

8 END_VAR

9 IF fs THEN

10 fs := FALSE;

11 b := 2;

12 END_IF

13 a := 1234/b;

14 | END_PROGRAM
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PLC Software
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PLC Software

Written in textual & graphical languages from IEC 61131-3
Features no recursion
Formalised as Control Flow Automaton (CFA)

©CoOoONOORWN =

PROGRAM RunningExample

VAR RETAIN
fs:BOOL
END_VAR
VAR
a:INT :
b:INT :
END_VAR
IF fs THEN

;= TRUE;

0;
0;

fs := FALSE;

b := 2;
END_IF

a := 1234/b;

END_PROGRAM

fs:=FALSE If

@X @ 0

a:=1234/b
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[ele] J

Specifications

Intermediate states are not observable

Automation engineers and specs always
refer to the observable state

Most specifications can be formalised via
invariants or temporal logics

Off-the-shelf verifier backend checks

formalised program w.r.t. the specification 10

Domain-specific specifications may

require dedicated procedures:
PLCopen-/Specification automata

Cycle-bounded temporal logics
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» Power outage or manual restart should not affect correctness
— PLCs feature battery-backed memory for retain variables

Retain drill's position in automated processing of workpieces
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On Restart-robustness
@0

Retain Variables

» PLC applications are often safety critical
» Power outage or manual restart should not affect correctness
— PLCs feature battery-backed memory for retain variables

Retain drill's position in automated processing of workpieces

» Assignments to such variables have unspecified semantics
» Prominent: delayed writing at the current PLC cycle’s end

Design & Verification of Restart-robust Industrial Control Software
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On Restart-robustness
(o] J

Restart-robustness

Program is restart-robust w.r.t. a spec, if it complies with the spec
in the context of restarts

Restart-robustness w.r.t. invariant a > 0
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Program is restart-robust w.r.t. a spec, if it complies with the spec
in the context of restarts

o

Restart-robustness w.r.t. invariant a > 0

fs:=FALSE Ifs

Initialised with [fs — true,a +— 0,b — 0] @
b:=2

The flag fs is retained 0

a:=1234/b
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(o] J

Restart-robustness

Program is restart-robust w.r.t. a spec, if it complies with the spec
in the context of restarts

o

Restart-robustness w.r.t. invariant a > 0
Initialised with [fs — true,a +— 0,b+ 0]
The flag fs is retained @ o
Nominal behaviour compliant? v
Robust with delayed writes? a:=1234/0 a:=1234/b
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CFA with restart-behaviour @ b
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@ B
a:=1234/b
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On Restart-robustness
oe

Parameter Synthesis

Instrumentation enables @

@

checking restart-robustness fo.sFALSE | 1Fs
Doesn’t help with finding safe bico
configuration of retain variables I

s

Add Boolean parameter ret_v
for each non-retain variable v 2:21234/b

Synthesis boils down to solving
a:=ret_a ? a : 0;

HVPWVV\VWT b:=ret_b 2 b 0

TRUE

c
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Approach

Observations:
Jv-quantified Horn clauses harder than regular CHCs
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On Restart-robustness
@0

Approach

Observations:
Jv-quantified Horn clauses harder than regular CHCs
Our special case: existential quantification over Booleans
Idea:

Manage choice of parameters and reuse efficient procedures
for reasoning about restart-robustness for fixed parameters

Over-approximate set of “safe” parameters and refine it while
counterexamples exist (CEGAR)
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On Restart-robustness
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Experiments — Synthesis Runtime [s]
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Future work will investigate restart-robustness as a relational property
between the nominal and restart-behaviour.

o/0 RWTH

Informatik 11
Embedded Software

Design & Verification of Restart-robust Industrial Control Software “
D. Bohlender




Related Work

[Hau+15] assumes delayed write semantics and adapts static
value analysis to distinguish between variables’ values before
and after a restart

Crash recoverability of C programs [KY16] is a related
problem, using a similar modelling, but differing from
restart-robustness in terms of requirements and program
transformations

SMV-based parameter synthesis for models of gene
regulatory networks [Bat+10]

Our counterexample-guided approach is most similar to
[Cim+13] but does not require quantifier elimination, is
independent of the chosen theory to model values, and works
with any CHC-solving algorithm
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Appendix
oe

Algorithm 1: SynthRetainConf(P, ¢)

Input  :Program P = (X & Xpar, Xin, A, lgoc, lEoc, def) with prametrised retains
Predicate (X)) characterising safe states

Variables: Predicate safe(Xpar) charactering parameters that do not lead to violations
Universally quantified Horn clauses #H

1 H <« toHorn(P) /I Represent program as YCHCs
2 (V,I,T) + toSymTS(P) /I and as symbolic transition system
3 safe()?par) <« true /I All parameters are assumed to be safe
4 while —sat (H U {p(X) « peoc(X & Xpar), safe(Xpar)}) do // 3 violating run?
5 k «+ length of violating run

6 cpar < cube of chosen (Boolean) parameter values in violating run

7 foreach lit in cpar do

8 Cpar < cpar With negated lit // Flip literal
9 if sat (I(V) A Ag<ic T(Vi, Vi1) A Gpar A ~p(Xy)) then  // Still violating?
10 | cpar ¢ cpar \ lit // Drop literal
1 safe()?par) — safe()?par) A —Cpar // Block unsafe parameters
12 return Safe()zpar) // (Potentially empty) region of safe parameters
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