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Introduction On Restart-robustness

Programmable Logic Controllers (PLCs)
I PLCs are devices tailored to the domain of industrial

automation, e.g. for actuating valves of a tank
I Realise reactive systems, repeatedly executing the same task
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Introduction On Restart-robustness

PLC Software
I Written in textual & graphical languages from IEC 61131-3
I Features no recursion
⇒ Formalised as Control Flow Automaton (CFA)� �

1 PROGRAM RunningExample
2 VAR RETAIN
3 fs:BOOL := TRUE;
4 END_VAR
5 VAR
6 a:INT := 0;
7 b:INT := 0;
8 END_VAR
9 IF fs THEN

10 fs := FALSE;
11 b := 2;
12 END_IF
13 a := 1234/b;
14 END_PROGRAM� �
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Introduction On Restart-robustness

Specifications

I Intermediate states are not observable
⇒ Automation engineers and specs always

refer to the observable state

I Most specifications can be formalised via
invariants or temporal logics

I Off-the-shelf verifier backend checks
formalised program w.r.t. the specification

I Domain-specific specifications may
require dedicated procedures:
• PLCopen-/Specification automata
• Cycle-bounded temporal logics
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Introduction On Restart-robustness

Retain Variables

I PLC applications are often safety critical
I Power outage or manual restart should not affect correctness
⇒ PLCs feature battery-backed memory for retain variables

Example
Retain drill’s position in automated processing of workpieces

I Assignments to such variables have unspecified semantics
I Prominent: delayed writing at the current PLC cycle’s end
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Introduction On Restart-robustness

Restart-robustness

Program is restart-robust w.r.t. a spec, if it complies with the spec
in the context of restarts

Restart-robustness w.r.t. invariant a ≥ 0

I Initialised with [fs 7→ true, a 7→ 0, b 7→ 0]

I The flag fs is retained
I Nominal behaviour compliant?

3

I Robust with delayed writes?

a:=1234/0

I Fixable for delayed writes?
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Introduction On Restart-robustness

Delayed Write Semantics

I Approach by instrumenting the
CFA with restart-behaviour

I Observation: In case of restart,
operations since last cycle are
irrelevant

⇒ Model as nondeterministic
choice: restart in next cycle?
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Introduction On Restart-robustness

Parameter Synthesis

I Instrumentation enables
checking restart-robustness

I Doesn’t help with finding safe
configuration of retain variables

⇒ Add Boolean parameter ret_v
for each non-retain variable v

I Synthesis boils down to solving

∃~Vpar∀~V \ ~Vpar . . .
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Introduction On Restart-robustness

Approach

Observations:
I ∃∀-quantified Horn clauses harder than regular CHCs
I Our special case: existential quantification over Booleans

Idea:
I Manage choice of parameters and reuse efficient procedures

for reasoning about restart-robustness for fixed parameters
I Over-approximate set of “safe” parameters and refine it while

counterexamples exist (CEGAR)
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Introduction On Restart-robustness

Experiments – Synthesis Runtime [s]

100 101 102 103
100

101

102

103

Z3 (MBQI) – 47 TO

C
E

G
A

R
-b

as
ed

S
yn

th
es

is
–

2
TO

Future work will investigate restart-robustness as a relational property
between the nominal and restart-behaviour.
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Appendix

Related Work
I [Hau+15] assumes delayed write semantics and adapts static

value analysis to distinguish between variables’ values before
and after a restart

I Crash recoverability of C programs [KY16] is a related
problem, using a similar modelling, but differing from
restart-robustness in terms of requirements and program
transformations

I SMV-based parameter synthesis for models of gene
regulatory networks [Bat+10]

I Our counterexample-guided approach is most similar to
[Cim+13] but does not require quantifier elimination, is
independent of the chosen theory to model values, and works
with any CHC-solving algorithm
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Appendix

Algorithm 1: SynthRetainConf(P, ϕ)

Input : Program P = ( ~X ] ~Xpar, ~Xin,A, lEoC, lEoC, def ) with prametrised retains
Predicate ϕ( ~X) characterising safe states

Variables: Predicate safe( ~Xpar) charactering parameters that do not lead to violations
Universally quantified Horn clauses H

1 H ← toHorn(P ) // Represent program as ∀CHCs
2 (~V , I, T )← toSymTS(P ) // and as symbolic transition system
3 safe( ~Xpar)← true // All parameters are assumed to be safe
4 while ¬sat (H∪ {ϕ( ~X)← pEoC( ~X ] ~Xpar), safe( ~Xpar)}) do // ∃ violating run?
5 k ← length of violating run
6 cpar ← cube of chosen (Boolean) parameter values in violating run
7 foreach lit in cpar do
8 c̄par ← cpar with negated lit // Flip literal
9 if sat (I(~V ) ∧

∧
0≤i<k T (~Vi, ~Vi+1) ∧ c̄par ∧ ¬ϕ( ~Xk)) then // Still violating?

10 cpar ← cpar \ lit // Drop literal
11 safe( ~Xpar)← safe( ~Xpar) ∧ ¬cpar // Block unsafe parameters
12 return safe( ~Xpar) // (Potentially empty) region of safe parameters
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